7,253 research outputs found

    Unselective regrowth of 1.5-μm InGaAsP multiple-quantum-well distributed-feedback buried heterostructure lasers

    Get PDF
    Unselective regrowth for fabricating 1.5-μm InGaAsP multiple-quantum well (MQW) distributed-feedback (DFB) buried heterostructure (BH) lasers is developed. The experimental results exhibit superior characteristics, such as a low threshold of 8.5mA, high slope efficiency of 0.55mW∕mA, circular-like far-field patterns, the narrow linewidth of 2.5MHz, etc. The high performance of the devices effectively proves the feasibility of the new method to fabricate buried heterostructure lasers

    Molecular Dynamics Study of Bamboo-like Carbon Nanotube Nucleation

    Full text link
    MD simulations based on an empirical potential energy surface were used to study the nucleation of bamboo-like carbon nanotubes (BCNTs). The simulations reveal that inner walls of the bamboo structure start to nucleate at the junction between the outer nanotube wall and the catalyst particle. In agreement with experimental results, the simulations show that BCNTs nucleate at higher dissolved carbon concentrations (i.e., feedstock pressures) than those where non-bamboolike carbon nanotubes are nucleated

    Longitudinal effects of metabolic syndrome on Alzheimer and vascular related brain pathology.

    Get PDF
    Background/aimsThis study examines the longitudinal effect of metabolic syndrome (MetS) on brain-aging indices among cognitively normal (CN) and amnestic mild cognitive impairment (aMCI) groups [single-domain aMCI (saMCI) and multiple-domain aMCI (maMCI)].MethodsThe study population included 739 participants (CN = 226, saMCI = 275, and maMCI = 238) from the Alzheimer's Disease Neuroimaging Initiative, a clinic-based, multi-center prospective cohort. Confirmatory factor analysis was employed to determine a MetS latent composite score using baseline data of vascular risk factors. We examined the changes of two Alzheimer's disease (AD) biomarkers, namely [(18)F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) regions of interest and medial temporal lobe volume over 5 years. A cerebrovascular aging index, cerebral white matter (cWM) volume, was examined as a comparison.ResultsThe vascular risk was similar in all groups. Applying generalized estimating equation modeling, all brain-aging indices declined significantly over time. Higher MetS scores were associated with a faster decline of cWM in the CN and maMCI groups but with a slower decrement of regional glucose metabolism in FDG-PET in the saMCI and maMCI groups.ConclusionAt the very early stage of cognitive decline, the vascular burden such as MetS may be in parallel with or independent of AD pathology in contributing to cognitive impairment in terms of accelerating the disclosure of AD pathology

    Fuzzy control of the dual-stage feeding system consisting of a piezoelectric actuator and a linear motor for electrical discharge machining

    Get PDF
    Gap width is an important factor that affects material removal rate, surface finish, and machining stability in electrical discharge machining processes. This research is to develop a novel control method for a new hybrid positioning system which consists of a linear motor and a piezoelectric actuator for high-efficiency electrical discharge machining processes. In the new system, the linear motor provides the macro feeding while the piezoelectric actuator feeds the workpiece in micro scale at high frequency. To reduce the delay caused by separate movements of the linear motor and piezoelectric actuator, a new control algorithm was developed to synchronize the movements of the motor and piezoelectric actuator. A fuzzy control system was used to control the feeding process. Piezoelectric actuator position and its speed were selected as the fuzzy inputs, while the fuzzy output was the linear motor speed. Cutting experiments were conducted, and results show that the fuzzy system is more powerful than the conventional algorithm and the new algorithm with constant motor speed. An increase in material removal rate of 1.6 times was achieved using the proposed fuzzy control algorithm

    Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsO1x_{1-x}Fx_x

    Full text link
    The effect of non-magnetic Zn impurity on superconductivity in LaFe1y_{1-y}Zny_yAsO1x_{1-x}Fx_x system is studied systematically. In the presence of Zn impurity, the superconducting transition temperature increases in the under-doped regime, remains unchanged in the optimally doped regime, and is severely suppressed in the over-doped regime. Our results suggest a switch of the symmetry of the superconducting order parameters from a ss-wave to s±s_{\pm} or dd-wave states as the charge carrier doping increases in FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad

    Carbon-doped ZnO: A New Class of Room Temperature Dilute Magnetic Semiconductor

    Full text link
    We report magnetism in carbon doped ZnO. Our first-principles calculations based on density functional theory predicted that carbon substitution for oxygen in ZnO results in a magnetic moment of 1.78 μB\mu_B per carbon. The theoretical prediction was confirmed experimentally. C-doped ZnO films deposited by pulsed laser deposition with various carbon concentrations showed ferromagnetism with Curie temperatures higher than 400 K, and the measured magnetic moment based on the content of carbide in the films (1.53.0μB1.5 - 3.0 \mu_B per carbon) is in agreement with the theoretical prediction. The magnetism is due to bonding coupling between Zn ions and doped C atoms. Results of magneto-resistance and abnormal Hall effect show that the doped films are nn-type semiconductors with intrinsic ferromagnetism. The carbon doped ZnO could be a promising room temperature dilute magnetic semiconductor (DMS) and our work demonstrates possiblity of produing DMS with non-metal doping.Comment: REVtex source with 4 figures in eps forma
    corecore